关于举行香港城市大学杨彤院士学术报告会的通知

发布时间:2020-01-13设置

报告题目:Prandtl Boundary Layer System and Beyond
报 告 人:杨彤 院士(香港城市大学)
报告时间:2020年1月16日(星期四)下午16:00-17:00
报告地点:37号楼3A02室
欢迎广大师生前往!
 
 
数学学院
2020年1月13日
 
报告摘要:
In 1904, Prandtl introduced a fundamental system derived from the incompressible Navier-Stokes equation with no-slip boundary condition to capture the behavior of fluid motion near the boundary when viscosity vanishes. Even though there are fruitful mathematical theories developed since the seminal works by Oleinik in 1960s, most of the well-posedness theories are limited to the two space dimensions under Oleinik's monotonicity condition except the classical work by Sammartino-Caflisch in 1998 in the framework of analytic functions and some recent work in Gevrey function spaces.
In addition to its early application in aerodynamics and later in various areas in fluid dynamics and engineering, Prandtl equation can be viewed as a typical example of partial differential equations with rich structure that includes mixed type and degeneracy in dissipation. Hence, it provides many challenging mathematical problems and most of them remain unsolved after more than one hundred years from its derivation.
In this talk, we will present the intrinsic structure of the Prandtl operator and it various forms and relation with other physical models.
 
报告人简介:
杨彤,香港城市大学讲席教授(Chair Professor),欧洲科学院院士。目前担任香港数学会主席(2016-)。主持的科研项目“守恒律组和玻尔兹曼方程的一些数学理论”获得2012年度国家自然科学奖二等奖;1998年获得首届国际华人数学家大会晨兴数学奖银奖;2011年获得香港裘槎基金会高级研究成就奖(Croucher Senior Research Fellowship 2011/2012)。曾担任SCI杂志Analysis and Applications (2013-2017)副主编,以及作为SCI杂志Kinetic and Related Models的创刊副主编之一。
杨彤院士长期从事非线性偏微分方程的研究,特别是在双曲守恒律和玻尔兹曼方程的研究中作出了重要的工作,产生了重大影响。关于双曲守恒律,杨彤院士与其合作者引入了新的广义熵泛函——后被称为“刘-杨泛函”,并建立了一个圆满的适定性理论,这一新的思路已被同行应用及推广到其他的数学领域。关于玻尔兹曼方程,杨彤院士与其合作者引入了新的宏观与微观分解,建立了玻尔兹曼方程与流体动力学方程的一个直接桥梁,得到了基本波与解的存在性与稳定性等一系列重要结果。
 

附件:

返回原图
/

XML 地图 | Sitemap 地图